A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water.

نویسندگان

  • E Sumesh
  • M S Bootharaju
  • Anshup
  • T Pradeep
چکیده

In this work, we describe the use of silver nanoparticles of 9 ± 2 and 20 ± 5 nm core diameter, protected by mercaptosuccinic acid (MSA) and supported on activated alumina for the removal of mercuric ions present in contaminated waters, at room temperature (28 ± 1 °C). These two nanoparticle samples were prepared by using two Ag:MSA ratios 1:6 and 1:3, respectively, during synthesis and were loaded on alumina at 0.5 and 0.3% by weight. The mechanism of interaction of silver nanoparticles with Hg(2+) ions was studied using various analytical techniques such as ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), inductively coupled plasma-optical emission spectrometry (ICP-OES), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Interactions of the metal ion with the metal core, the surface head group and the monolayer functionality were investigated. A high removal ability of 0.8 g of mercury per gram of Ag@MSA was achieved in the case of 1:6 Ag@MSA. These two materials show better uptake capacity of Hg(2+) in the pH range of 5-6. The ease of synthesis of the nanomaterial by wet chemistry, capability to load on suitable substrates to create stable materials and affordable cost will make it possible to use this approach in field applications, especially for the treatment of Hg(2+) contaminated waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...

متن کامل

Removal of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle

Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 189 1-2  شماره 

صفحات  -

تاریخ انتشار 2011